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In this paper, we study the issue of process creation from an algebraic per-
spective. The key to our approach, which is inspired by the work of AMERICA &
DE BAKKER [AB], consists of giving a new interpretation to the operator sym-
bol - (sequential composition) in the axiom system BPA of BERGSTRA & KLOP
[BK1,2,3]. We present a number of other models for BPA and show how the
new interpretation of - naturally generalises the usual interpretation in BPA or
ACP. We give an operational semantics based on Plotkin style inductive rules,
and give a complete finite axiomatisation of the associated bisimulation model.

1. INTRODUCTION.

In process algebra theories like CCS, CSP, MEIE and ACP, not much attention has
been paid so far, to the concept of process creation. Instead, parallel composition is
used as a primitive constructor of concurrent systems. In SMOLKA & STROM [SS]
and VAANDRAGER [VA], process algebra semantics is given for languages with pro-
cess creation (NIL resp. POOL), but there the process creation construct is translated
to an architectural expression with parallel composition.

A first attempt to deal more directly with process creation in an algebraic setting
is described in BERGSTRA [B], where the axiomatic system ACP is extended with a
mechanism for process creation. The key axiom here is

Eg(cr(d)x) = cr(d)-Ee(¢(d) lIx).
The operator E¢ denotes an environment in which process creation can take place. If
an action cr(d) is performed in this environment, a process ¢(d) is created and placed
in parallel with the remaining process.

Since process creation is an important concept, present for instance in ADA,
NIL, POOL and UNIX, it seems worthwhile to look for a more direct and composi-
tional treatment of process creation which does not need a global environment like an
E¢-operator. Here, we profit to a large extent of the work of AMERICA & DE
BAKKER [AB]. The simple but crucial observation which they make, is that in order
to give a compositional semantics to process creation, one has to interpret the se-
quential composition differently. As an example consider the expression

a-new(b-c)-d.

Both authors are sponsored by ESPRIT project 432, METEOR (A formal integrated approach to
industrial software development), and RACE project 1046, SPECS (Specification and Programming
Environment for Communication Software).
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The intuitive semantics of this expression is a process which first performs a, after
which a new process is created doing b followed by ¢. The newly created process
executes in parallel with the continuation d. Thus, the traces of this process are
abcd, abdc and adbc. Consequently, we cannot interpret x-y as ‘first do x and
then y' (as is usual), because in a setting with process creation process X may con-
tinue after process Yy has started.

For this reason, in AMERICA & DE BAKKER [AB), a new semantical operator :
is introduced, which serves as the interpretation of - in a setting with process cre-
ation. In the algebra for process creation that we present in this paper, we will inter-
pret the - as a continuation operator in essentially the same way as in [AB). But be-
fore we come to this operator, we first give an extensive overview of a number of
other interpretations of -. What all these interpretations have in common with the
continuation operator, is that in a setting with alternative composition (+), they all
satisfy the axioms of BPA (Basic Process Algebra) of BERGSTRA & KLOP [BK1,2,

3] X+y=yY+X X+y)z=xz+y2Z
X+y)+z=x+(y+2) (x-y)z = x(yz)
X+X=X

Most of the discussion of this paper takes place in the setting of interleaving seman-
tics. However, we show that a particular interpretation of - as sequential composition
(like in ACP) and also our interpretation of - as continuation, can both be lifted in a
natural way to the world of event structures of WINSKEL [W]. In both these inter-
pretations, we have an instance of action refinement in the sense of [CDP] and [GG].
In fact, and this is surprising, sequential composition and continuation have the same
definition on event structures, only sequential composition is defined on a more re-
stricted domain of processes. Hence the rather substantial differences between the
two operators on the level of interleaving semantics almost disappear on the level of
True concurrency.

Whereas in AMERICA & DE BAKKER [AB] operational as well as denotational
models are presented (and proven to be equivalent), we concentrate on operational
models in this paper. As is done in [AB], we use Plotkin-style rules for the opera-
tional semantics. There are a number of differences, however.

First, we want all rules to be as simple as possible, and each rule should embody
a clear intuition about a certain operator. Therefore, we reject a rule like

(.., (s1:82)r, .. W) = (..., S13(S23T), -.cs W),
which occurs in [AB): we think it is not part of a natural operational intuition about
the ;-operator that brackets can move to the right.

A second design criterion that we used in the construction of our operational se-
mantics is that all rules should be in the ryft/tyxt format of GROOTE & VAANDRAGER
[GV]. This format poses certain restrictions on the inductive rules which guarantee
that bisimulation equivalence is a congruence. Thus, any set of rules in tyft/tyxt for-
mat immediately induces an abstract compositional semantics. In [GV] it is shown
that this format cannot be generalised in any obvious way, unless one is willing to
work in a setting of terms over a many sorted signature, or use rules with negative
hypotheses.

Our third design criterion was that the transition systems generated by the induc-
tive rules should contain no silent or internal steps. If such transitions are present,
one is more or less forced to say something about the nature of 7 and to choose
whether one adopts all of Milner's 1-laws or only a few of them. We prefer to sepa-
rate the issue of abstraction from other concerns.
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A final design criterion is upward compatibility with a non-interleaved event
structure semantics. By now, many algebraic concurrency languages have been pro-
vided with a non-interleaved semantics (see e.g. [DDM], [O], [BC], [W]). We think
that a general requirement for an interleaved semantics of a concurrent language is
that there exists a natural non-interleaved semantics which is compatible with it.
More specifically, we require that there is an event structure semantics with this
property. The idea is that event structures (see WINSKEL [W]) constitute one of the
most important domains for "True’ concurrency, and one must have a good reason to
present a semantics which is incompatible with them. We show how some proposals
for an operational semantics can be discarded because it is unclear how they could
meet this last requirement.

In section 3, we present operational rules for a simple language APC for concur-
rent communicating processes with process creation. We claim that these rules meet
all the requirements above. An interesting feature of these rules is that one of them
has a look-ahead of more than one action: in order to compute the initial transitions of
process X-y, one needs information about the first two transitions of x. This implies
in particular, that our - operator is not definable in terms of CCS, CSP, MEIE or
ACP.

In section 4, we present a sound and complete axiomatisation of the bisimulation
semantics induced by the rules for APC. This axiomatisation uses a number of auxi-
liary operators.

With a number of examples, we illustrate in section 5 how APC can be used to
specify concurrent systems, and how identities between processes can be proved
algebraically.

2. BASIC PROCESS ALGEBRA.

2.1 The aim of this paper is to give an algebraic treatment of the feature of process
creation. It will turn out that the key to our solution consists of giving a new inter-
pretation to the operator symbol - in the axiom system BPA (Basic Process Algebra)
of BERGSTRA & KLOP [BK2,3]. Therefore, we start with a review of BPA. We will
see that there exist at least five very different interpretations of the operator symbol -.
One thing that all these interpretations have in common is that the laws of BPA are
satisfied, and this similarity may be considered as a surprising fact.

2.2 BPA starts from a given set A of actions. These actions, denoted by a,b,c,...
are constants in the language. Further, BPA has two binary operators: sum, denoted
+, and product, denoted -. Processes X,Y,... constructed with these operators will
always satisfy the axioms in the following equational specification BPA.

X+y=Yy+X Al
X+y)+z=xX+(y+2) A2
X+X=X A3
(xX+y)z=xz+Yyz A4
(xy)z = x-(y-z) AS

TABLE 1. BPA.
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Of all operators, - will always bind the strongest, and + the weakest. Thus, X'y +Z
means (x-y) + z. We often write Xy instead of x-y. We denote the set of closed terms
over BPA by T(BPA).

2.3 In the work of BERGSTRA & KLOP [BK2,3], the elements of A are often called
atomic actions, the + operator is called alternative composition, and the - op-
erator is called sequential composition. The intuition is that actions ab,... are
events without positive duration in time; they are atomic and instantaneous. The in-
terpretation of (a + b)-c is a process that first chooses between executing aor b
and, second, performs the action C after which it is finished. Since time has a direc-
tion, product is not commutative; but sum is, and in fact it is stipulated that the op-
tions possible in each state always form a set (axioms A1, A2, A3). The other dis-
tributive law X(y + Z) = Xy + Xz is not included, because the moment of choice be-
tween y and 2 in the two processes is different.

We would like to stress again that this is just one possible interpretation of the
elements of the signature of BPA; we will consider other interpretations in the se-
quel.

2.4 SEQUENCING.

We will now present our first model for BPA. Like all models in this paper, it is de-
fined using structural rules in the style of PLOTKIN [PL]. We introduce, for each
constant a € A, a binary action relation 2, on terms in T(BPA). The intended
meaning of X £ y is that process X may perform an a-action, and thereby evolve into
process Y.

In order to define the model, we have o extend the signature of BPA with an
auxiliary constant 8. We denote the set of closed terms over this extended signature
by T(BPAg). In the ACP framework of Bergstra & Klop, & is called deadlock.
This name suggests a particular intuition about the behaviour of this process which is
not in accordance with the interpretation of & in our first model. Rather, 8 plays the
same role as NIL of CCS (see MILNER [M]) or STOP of CSP (see HOARE [H]).

The model we consider here, interprets - as sequencing: x'y starts with the ex-
ecution of x, and if X can do no more actions, then execution of y starts. In all mod-

els that we present in this paper, the constant  is characterised by being unable to

. . a .
perform any actions, i.e. 8 = X for no a,x. We write X # to denote that x has no
outgoing transition (so we have 8 7).

We define the predicates £ inductively by means of the rules in table 2.

a® s
a ' a v

X — X y T x

X+Yy 3 x' X+Yy 2, y'

x 3 x' X 7 y Dy
a N a [}

Xy * Xy Xy >*y

TABLE 2. Action relations for BPA with sequencing.
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2.5 A problem with this definition is the appearance of negative premisses. This
makes that it is not immediately clear that there exists a distinguished transition rela-
tion agreeing with the rules. That such a relation exists in this case is due to the fact
that the presence of an outgoing transition of a term only depends on the presence or
absence of outgoing transitions from terms of a lower complexity. BLOOM, ISTRAILL
& MEYER [BIM] (who also present the above rules for sequencing) observe that
negative premisses are needed for the definition of this operator.

We turn the structure of action relations into a model for BPA by means of the
notion of bisimulation (due to PARK [PA]).

2.6 DEFINITION. A binary relation R on process expressions is a (strong) bisimu-
lation if it satisfies the so-called transfer property:

1. ifx2 y and R(x,x") then there exists y' with x' % y' and R(y,y') (for all labels
a);
2. conversely, if x' 4 y' and R(x,x') then there exists y with X 3, y and R(y,y').
Two processes X,X' are called bisimilar, notation X « X', if there exists a bisimula-
tion R with R(x,x’).

Then, the following theorems are standard:

2.7 THEOREM. Bisimulation is a congruence relation on T(BPAg).

2.8 THEOREM. BPA is a complete axiomatisation of T(BPA)/«, i.e. for all terms s,t
from T(BPA) we have
BPAF s=t o TBPA) e F s=t < Seltl

2.9 Notice that theorem 2.8 only talks about terms from T(BPA), so terms not in-
volving 8. As was already remarked by BERGSTRA & KLOP [BK1], axiom A4 is not
valid any more on T(BPAg) (using the valid axiom 8'X = X, we can derive a'-b = (a +
8)b = a'b + 6-b = a'b + b). Therefore, if we want to extend theorem 2.8 to the case
with 8, we have to restrict Ad.

2.10 THEOREM. Let A4*, A6 and A7* be the following axioms:
(ax +by +y)z=axz + (by +y')z  A4*
X+8=X A6
&x =x AT*,
Then A1,2,3,4*,5,6,7* form a complete axiomatisation of T(BPAg)/«, i.e. for all
terms S,t from T(BPAjs) we have
Al1234*56, 7% s=t & T@BPAs)= F s=st & st

If one takes a more denotational viewpoint, then Plotkin style rules are just a way
to define function between labeled transition systems (process graphs). The last two
rules of table 2, for instance, determine the operation of sequencing: given two
process graphs g and h, g-h is the process graph obtained by appending a copy of h
to each endnode of g. Sequencing is a simple and natural operation on process
graphs. However, it turns out that in a setting with parallel composition and commu-
nication we often want to interpret the operator symbol - differently.
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2.11 SEQUENTIAL COMPOSITION.

Consider a process Xy, where x describes the behaviour of a system consisting of a
number of processors which jointly perform some parallel computation. Then it may
occur that at some point during the execution of x a state of deadlock is reached,
i.e. all processors are waiting for each other, before the computation is finished.
Usually, y is not allowed to start in such a situation, even though x has reached a
state where no transitions are possible. Process y may start only when process X has
terminated successfully. When we talk about sequential composition, we assume that
there are two termination possibilities: successful termination and unsuccessful ter-
mination. The sequential composition of x and y starts with execution of x, followed
by the execution of y upon successful termination of x. Now there are at different
ways in which we can make this intuition more precise. We will present three alter-
natives, before focusing on the third alternative. Consecutively, we consider:

a. successful termination as a hidden signal (2.12);

b. successful termination as an attribute of actions (2.13);

c. successful termination with V-refinement (2.14).

2.12 SUCCESSFUL TERMINATION AS A HIDDEN SIGNAL.

Deadlock is considered as an unsuccessful form of termination. If deadlock is char-
acterised by the absence of any possibility to proceed, it scems natural to introduce a
special label to indicate successful termination. This special label is denoted V

(pronounced 'tick'). Thus, we will have an extra binary relation —. Next, the be-
haviour of process a € A is described by the rules
atre g€ —+ o

Here, € is a new constant symbol denoting the process that terminates immediately
and successfully (€ first appears in KOYMANS & VRANCKEN [KV]). We see that the
process a first performs an a-transition, and then terminates successfuily. The pro-
cess & still has no outgoing transitions and therefore corresponds in this setting with
the process which terminates immediately but unsuccessfully. Now what rules can
we have for the sequential composition operator? First, we note that it would not be
correct to have rules like

a. .. v
X = X X — X
B X
xy % Xy xy =y

because then we could derive things like
(ab)c® (eb)cHr cSre,

which are clearly in contrast with the intended semantics of the sequential composi-
tion operator. Hence V-events performed by the first argument of the - operator can-
not remain visible.

One possible view on sequential composition, which is taken in CCS (see MIL-
NER [M]), is that V-events do occur, but that they are 'hidden from our view'. This
can be expressed formally by the following rules:

a, . v,
xy %> xy xy >y

Here < is the silent move of MILNER [M]. Under this interpretation, the transitions of
process (a'b)-c are:

@b)yc® eb)c B becDecHcSe s,
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The introduction of T leads to a number of difficult questions. For instance, should

the process (a-b)-C be considered equal to a process p with transitions
phgBrishs,

In this paper we want to deal with concrete process algebra only, i.e. we do not want

to consider the silent move and different alternatives for its axiomatisation and repre-

sentation by means of action relations. Therefore, we will not pursue the above view

on sequential composition any further in this paper.

2.13 SUCCESSFUL TERMINATION AS AN ATTRIBUTE OF ACTIONS.
In BRINKSMA [BR], a sequential composition operator is presented which is based
on the idea that successful termination is a visible attribute of the last action of a pro-
cess. Slightly simplified, this looks as follows: beside the actions in A, the set of la-
bels also contains the elements of the set Ay = {aV | ac A}. The new action rules are
(ae A) ‘

a

a N ]
aa!»S xa—+x X —a»x.
Xy = xy Xy —y

This approach is comparable to the approach in VAN GLABBEEK [VG] (there, a a_j’

8 is written as a 2» V). While this is a viable approach, the problem we have with it
is, that there seems to be a mismatch with so-called "True' concurrency and event
structures. Many algebraic concurrency languages can be provided with a non-inter-
leaved semantics. A reasonable criterion, put forward by DEGANO, DE NICOLA &
MONTANARI [DDM] and OLDEROG [O], is that the interleaved semantics of a lan-
guage must be retrievable from the non-interleaved semantics. Now consider the op-
erator || of parallel composition without synchronisation. If we add such an operator
to the current setting, the action rules will be

a aVv a av
X X X4 X y >y y >y
xlly2sxlly  xlly?sy xlly 2+ xlly’ xlly &+ x

With these rules, the transition system for allb becomes as shown in fig. 1.

allb

PN
N A

FIGURE 1.

It seems almost unavoidable that in a non-interleaved event structure semantics from
which the above interleaving semantics is retrievable, there are 4 events a,b,av,bv.
Furthermore we do not see how to avoid that events a and b are conflicting, whereas
event bV is causally dependent on event a and event av is causally dependent on
event b. But this would be in clear contradiction with the non-interleaved interpreta-
tion of allb that one expects intuitively, where the two events a and b are not
causally related.

Hence, we think that it will be difficult to give a non-interleaved event structure
semantics which is compatible with this interpretation of sequential composition.
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2.14 SUCCESSFUL TERMINATION WITH V-REFINEMENT.

A third view on sequential composition, the view we prefer, is that we have to do
with an instance of action refinement as advocated e.g. by CASTELLANO, DE
MICHELIS & POMELLO [CDP] and VAN GLABBEEK & GOLTZ [GG]. We again use
V-labels to denote successful termination, and assume we have a process domain
where V-events have no causal successors and are moreover not concurrent with any
other event. This implies that a V-event, if it occurs, will always be the last action
performed by a process. On such a domain the sequential composition of processes X
and y can be implemented by refining every V-event of x to the process y. We refer
to [GG] for a formal definition of refinement on the domain of event structures™.
Here, we only present the action rules which correspond to the refinement view of
sequential composition, in table 3.

a v
a—e £+
u ' u '
X X B ad A
u N u '
X+y — X X+y ¥y
L} .J L] L
x 2 x x o x' oy ey
a . u .
Xy = x"y Xy >y

TABLE 3. Sequential composition with action refinement.

In this table (and everywhere in the sequel), u stands for either a or V. This opera-

tional semantics can be found in BAETEN & VAN GLABBEEK [BG], only there X —+ &
was written as x!. The present formulation is due to GROOTE & VAANDRAGER
GV].

: Let T(BPAge) be the set of closed terms over the signature of BPA extended
with the constants §,&. Since all rules in table 3 are in the tyft format of [GV], bisim-
ulation is a congruence relation on T(BPAge). The rules of table 3 induce a model for
BPA. In addition, we can also give an axiomatisation for the theory including the
constants ,e. Let BPAgg be the theory consisting of BPA together with the axioms
in table 4.

X+0=X A6
dx =98 A7
EX =X A8
XE =X A9

TABLE 4. Termination laws.

Thus, 5 is the neutral element for alternative composition, € is the neutral element for
sequential composition. A7 is explained, since a deadlocked process can never per-
form any actions (notice the difference with A7*!). Note that if we added the dis-

* In fact, in [GG], actions are only refined by finite, conflict-free event structures. However, it can
be easily seen that in case the actions which are refined have no causal successors, the definition of
[GG] can be generalised to general event structures.
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tributive law x(y + z) = xy + xz, then we could derive ab = a(b + 3) = ab + aJ,
and so a process with no deadlock possibility would be equal to one that may dead-
lock, a clearly undesirable situation.

Now we have the following theorem, due to BAETEN & VAN GLABBEEK [BG].

2.15 THEOREM. BPAg; is a complete axiomatisation of T(BPAsg)/«, i.e. for all
terms S,t from T(BPAge) we have
BPAs: - s=st &  T(BPAs)/a F s=t S Set

In the next section, we will extend this last view on sequential composition to a set-
ting with process creation.

3. PROCESS CREATION.

3.1 MOTIVATION.

In 2.14, we restricted our attention to a domain of processes where a V-event is al-
ways the last event in an execution. This was a natural restriction since - was inter-
preted as sequential composition and v as successful termination. Now we would
like to consider the operation of V-refinement on a more general domain where V-
events still do not have causal successors but with the possibility that a V-event is
concurrent with a non-V-event.

These more general processes can for instance arise if one has an operation
new(x) which removes all V-events in a process and introduces a new V-event
which is concurrent with the remaining events of x. In such a setting every process
can perform at most one V-event in its lifetime but this is not necessarily the last
event. If we interpret a as a process which first does an a-event followed by a V-
event, and the operator symbol - as V-refinement, then we can stepwise construct the
interpretation of a:(new(b-c)-d) as in fig. 2.

b b-c new (b-c) new (b-c)-d a-(new (b-c)-d)
b b b b d a
v c c c v 1 i

N c v

FIGURE 2.

One may think of fig. 2 as a graphical representation of a labeled prime event struc-
ture (see {W] or [GG] for the terminology). The arrows denote the causality relation.
The traces of this process are

abcdv abdcv abdvc

adVbec adbvc adbc
The reader might notice that what we have achieved now is that we have informally
given a semantics (essentially an event structure semantics) of a simple language
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with process creation. Moreover, this semantics agrees with the intuitions concern-
ing process creation that we presented in the introduction. In fact we claim that the
semantics is compatible with the semantics given in AMERICA & DE BAKKER [AB}
for a uniform and dynamic language (section 4). In the language of [AB], also alter-
native composition and p-recursion are present. We have not described an interpre-
tation of these operators on event structures because we do not want to become t0o
technical here. Such an interpretation, however, is standard and described in many
papers (see for instance [W]).

In [AB], the operator : is presented as an operator "which is able to decide dy-
namically whether it should act as sequential or parallel composition”. We prefer a
different intuition because we think that the operator : does not introduce a choice or
conflict between sequential and parallel composition, but rather that it is a natural
generalisation of the sequential composition operator - on a domain of processes
where ¥ may occur in a non-final position.

A surprising thing about the above semantics is that, on the domain of event
structures, we give exactly the same interpretation to the operator symbol - as in the
case of sequential composition. The only difference is that the domain of processes
is enlarged. When we work with the extended domain of processes, we will call this
operation continuation and the V-event the continuation action (sequential
composition and successful termination is not an appropriate terminology now).

3.2 CONTINUATION

We will now give Plotkin-style rules, which correspond to the above event structure
semantics. It turns out that on this level we do have to change the rules for the - op-
erator: since in a product x-y, the process X may continue after y has started, we have
to introduce an auxiliary operator | for describing those states where y has started
but x is not yet finished. See table 5.

a \ v ' u '
X —* X X — X y =y

a ' u ' [
xy =+ x"'y xy = x'Iy
TABLE 5. Continuation.

We can see, that the second rule here is a generalisation of the corresponding rule in
table 3. There, if X — X', necessarily X'=3, and the term 8['x has the same transitions
as X.
The reader may think there is a possibility missing here, viz.
x g xl a_’ x"
a “
xy = x"I'y
However, this rule is not in accordance with our view on sequential composition
with refinement of V-events: when y refines the V-event, any action in place of the V-
event should involve an initial action of y. Moreover, the proposed rule leads to
counter-intuitive behaviour: process x should behave the same as process X', but if
X can perform v and then a, then Xx°€ can also perform a before v with the rule
above.

3.3 PARALLEL COMPOSITION.
The operator |} is just parallel composition with the additional restriction that only the
process on the right-hand side may perform V-events. This operator is very similar to
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the parallel composition operator in the theory ACP of [BK2,3]. In ACP, the parallel
composition of x and y can perform a V-event only if both x and y can perform a V-
event at the same time. When we compose processes X and y by means of our new
combinator [}, the composition can do a V-event when y can do a V-event.

With respect to interleaving, [ behaves as one would expect: if one component
can perform a certain atomic action, the composition can also perform this action. In
table 6, we present the action relation definition for [

X a, x' y Y, z'
xPy ® x'I'y xIy % xIy'

TABLE 6. Parallel composition.

We should note that all our operators are defined on the domain of processes that
is described above. Thus, any composition of processes that have at most one \-
event in every execution path, again gives such a process. If one has no objection to
operators that lead outside this domain, a symmetric parallel composition can be
illsed, and x[M'y is represented by something like dvy(x) lly (where 9y} cancels all

's).

In languages with process creation, parallel composition is mostly not included
in the language. It is an auxiliary operator which is present only on a semantical
level.

3.4 PROCESS CREATION.
The operator new can be defined by:
new(x) = x[l'e.
From this definition, it follows that new is characterised by the action rules in
table 7.

x 3 x'

new(x) ¥ x-3

new(x) » new(x")
TABLE 7. Action rules for process creation.

We claim that this operator is essentially the same construct as the new of AMERICA
& DE BAKKER [AB] (section 4).

3.5 EXAMPLE. The term a-new(b-c)-d determines the transition diagram in fig. 3.
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@
FIGURE 3.

3.6 COMMUNICATION.

Although the rules of tables 5-7 gave a simple and intuitive semantics to process cre-
ation, this semantics is not very practical. In any practical language with process
creation there must be a possibility of communication between a newly created pro-
cess and the rest of the system. Therefore, we add rules for I’ and - which express
the possibility of communication.

Like in ACP, we have given a partial binary function y on A, which is
commutative and associative, the so-called communication function. If y(a,b) =
¢, we say a and b communicate, and the result of the communication is C. If ya,b)
is undefined, we say that a and b do not communicate. In table 8, we present the
new rules for I and -.

We will not discuss here the consequences of the change in the action rules on
the level of non-interleaved event structure semantics. It will be clear that - can no
longer be interpreted as just refinement of tick-events. The construction will now in-
troduce a large number of new events which describe possible synchronisations
between the original and the new processes.

a . b '
X 2 X Y Y ifyab)=c
xPy = x'Ty’
x\l_’xva__’ xu y'b“' yo
— ifyab)=c¢
xy =+ x"[y

TABLE 8. Communication
As before, a,b,c range over A, U ranges over AU

3.7 ENCAPSULATION.

As in ACP (see [BK2,3]), we have the encapsulation operator oH (where His a
set of atomic actions), which blocks actions from H. This operator is used to block
communications with the environment, and remove 'halves' of communication
(actions that should communicate). The action relation definition is straightforward.
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u '
X — X

—U—-_. if
OH(X) ~* OH(X')
TABLE 9. Encapsulation.

ue H

3.8 BISIMULATION.

Since all the action rules presented so far are in the tyft format of GROOTE & VAAN-
DRAGER [GV], we can conclude that bisimulation remains a congruence, also with
respect to the new operators [, -, dH. Thus, if T(PC) is the set of terms built with the
signature of BPAg, extended with these operators, then T(PC)/« is a well-defined
structure. In the next section, we will proceed to find a complete axiomatisation for
this structure.

4. AXIOMATISATION.

4.1 AUXILIARY OPERATORS.

In order to give a finite axiomatisation for the structure T(PC)/« defined in 3.8, we
will need some auxiliary operators, comparable to the operators L, | in ACP (see
{BK2,3]). Since our parallel composition operator is asymmetric, we will need not
two but three auxiliary operators: [, I, T. These three operators will form the three
components of the merge operator [[': |, the left-merge, will give the possibilities
that the left-hand side performs an event, [I', the right-merge, gives the possibili-
ties that the right-hand side performs an event (together, these two operators give the
interleaving), and finally, [', the communication merge, gives the possibilities
that a communication action occurs between the two processes.

The axiomatisation to be presented also uses an additional auxiliary operator V.
The process V(x) starts with a V-event. Next the process X is performed from which
however all ¥-events have been removed. When no confusion can occur, we will
write VX instead of V(x).

4.2 SIGNATURE.

Now we will present the language for our Algebra for Process Creation
(APC). As parameters of the language, we have a finite set A of atomic actions, and
a partial binary function yon A, which is commutative and associative. Then, we
have constants a (for each ac A), constants 8,&, binary operators +, [, I',T, a
unary operator v, and unary operators dH (for each HCA).

4.3 AXIOMS.
The axioms of APC are presented in table 10. There, a,b € A, HC A, and X,y,Z are
arbitrary processes. Notice that the constant € becomes definable, by axiom PC1.
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X+y=Y+X Al xIy = x[y + x 'y + xTy PCM
X+(y+2Z)=(xX+y)+2 A2
X+ X=X A3 Sx =9 PCL1
X+y)z=xz+yz Ad ax['y = a(xI'y) PCL2
(xy)z = x(yz) A5 Vx[y = & PCL3
X+6=x A6 x+y)ltz=x[z +y[z PCL4
x=35 A7
£X = X A8 x[d6=98 PCR1
XE = X A9 xray = a(x['y) PCR2
‘ x My = V(xI'y) PCR3
=3 PC1 xIMy +2)=xI'y +xl'z PCR4
new(x)y = xIl'y PC2
Vx = V(x8) PC3 ax['by = y(a,b)-(xI'y)
(Vx):y = xI'y + xl'y PC4 if y(a,b) defined PCC1
axfby=98  ifundefined PCC2
OH(d) = 8 PCD1 Vxly =8 PCC3
oH(ax) = a-on(x) ifagH PCD2 xMy =8 PCC4
oH(ax) = & ifaeH PCD3 x+y)z=xlz+ylz PCCS5
IH(Vx) = V(OH(X)) PCD4 xMy +2) =xly + x['z PCC6
OH(x+Y) = OH(X) + dHly) _PCD5
TABLE 10. APC.

When we write a specification in APC, we only use a part of the signature, not
the auxiliary operators. Formally, we can declare part of the signature to be hidden,
as explained e.g. in BERGSTRA, HEERING & KLINT [BHK] or VAN GLABBEEK &
VAANDRAGER [VGV].

The visible signature of APC is ¥ = {a | ac A} U {8,¢,+,,new} U {oH | HCA},
whereas the hidden signature contains [I,IL, I',I',V. We will write all specifications
in section § in the signature ..

4.4 LEMMA. We list some useful identities that can be derived from APC.

i. dffx=x vii. new(e)=¢

ii. new(x) =x[e viii.  (Vx)8=38

iii. new(d) =¢ ix. NEx)=¢

iv. efx =28 X. (xfty)-z = xIMy-2)
v. efx=xle=98 xi.  Vx=xe.

vi. 3[x=x[d=8

PROOF. Mostly straightforward. We give proofs for the difficult identities.
i, x=8fx+8Ix+dMx=8+3x+dx=
=8 x+8Mx= (VW)x=ex=x;
vi. Mx=8x+eMx=(8+&)x=¢lx=9;
ix. Y(Vx) = V((Vx)-8) = V6 = ¢;
x. (xI'y)-z = (new(x)y)z = new(x)(yz) = x[[(y-z);
xi. Vx = Vxe = x e + xle = xJ&.
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Note that from axiom PC2 and lemma 4 4.ii it follows that the operators new and |
can be defined in terms of each other. Also, by 4.4.xi, the auxiliary operator v is de-

finable in terms of | and €.

4.5 ACTION RELATIONS.
We can also give action relation definitions for the auxiliary operators. We give the
full setin table 11.

ade el 5 Vx % x5
a '
new(x) * x5 X 2 X
new(x) = new(x')
u ' u [
X — X y — X
x+y 5 x' x+y =y’
a \ v , u ,
X — X X =+ X' y =y
xy & x'y x-y 5 x' Ty
x Tl__' xl fa___’ xll y b__' yl
3 ifya,b)=c
xy = x"Ty'
a '
X = X
xMy 2 x'Fy xby ® x'Iy
y Dy
xPy® xPy' xIy % xy’
a , b '
cx — x' y —"cy - l if’Y(a,b)=C
xIPy = x'['y' xI'y = x'['y
x L X'
u— ue H
dH(X) — IH(X')

TABLE 11. Action relations for APC.

Again, all these action rules are in tyft format, so bisimulation remains a
congruence. Let us call the set of process expressions over this extended set of
operators T(APC). We will prove that the axiom system APC is a complete
axiomatisation of T(APC)/« . First, we will need some other results.

4.6 DEFINITION. We define some useful sets of terms.
i. The set of bottom terms is defined inductively by:
» §is abottom term;
« ift,s are bottom terms, then soare a-tand t + s.
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ii. The set of basic terms is defined inductively by:

« §is abasic term;

« ift is a bottom term, then Vt is a basic term;

» if t,s are basic terms, thensoare atand t + S.
We see that a basic term is a closed term built from the signature d, +, v, a, such that
a V occurs at most once in every execution sequence, and such that we have only
prefix multiplication (as defined below).

4.7 DEFINITION. We say a term has only prefix multiplication if for each sub-
term of the form t's, t is an atomic action, and S is not an atomic action. This means
that for these terms, instead of having constants @ and general multiplication -, we
could also use a signature with only unary operators a-. Notice that this is the usual
situation in CCS (MILNER [M]) and CSP (HOARE [H]).

4.8 LEMMA. Let t be a basic term. Then there exists a bottom term t' such that APC
Fté=t.

PROOF: Straightforward induction on the structure of basic terms.

4.9 THEOREM. (Elimination Theorem)
Let t be a closed APC-term. Then there exists a basic term t' such that APCH t =1".

PROOF: By an inductive argument, it is enough to prove the following claim:

Let q.q' be basic terms and let p be syntactically equal o0 §, €, a, g+q', g'q’, qlf'q’,
qlq’. al'q. ql'q', Yg, new(q) or dH(q). Then there exists a basic term r such that
APCH p=r.

To prove this claim, we use induction on the size of a term. We define size induc-
tively by:

+ size(d) = size(e) = 1

+ size(a)=2

+  size(t+') = size(t ') = size(t['t') = size(t ['t') = size(t['t') = size(t) + size(t')
size(t['t') = size(t) + size(t) + 1

size(~1) = size(t) + 2

size(new(t)) = size(t) + 5

size(on(t)) = size(t) + 1.

In the cases p = §, p = q+q', we already have the required form.

« p=eusePCl;

» p=a:use A9 and PCI;

+ P =q4q" here we use induction on the structure of q. If q = §, use A7;if g =
a-q", use AS and the induction hypothesis; if ¢ = Vg", with q" a bottom term, use
PC4 and the induction hypothesis; if g = @" + g%, use A4 and the induction
hypothesis;

«  p=qlrq" use PCM and the induction hypothesis;

« p=qltqg" here we use induction on the structure of q. If q =8, use PCL1; if g =
a-q", use PCL2 and the induction hypothesis; if ¢ = ¥q", use PCL3; if g =q" + q*,
use PCL4 and the induction hypothesis;

< p=qlq'" here we use induction on the structure of q'. If q' = §, use PCR1; if '
= a-q", use PCR2 and the induction hypothesis; if ' = Vq", use PCR3 to write p =
V(ql*q"), by induction p = Vg* for some basic g*, by PC3 p = V(q*-3), and then
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by lemma 4.8 p = Yq° for some bottom q°; if q = Q" + G*, use PCR4 and the in-
duction hypothesis;

« p=qlq" by simultaneous induction on the structure of q and q'; left to the
reader;

« p=+q: use PC3 and lemma 4.8;

+ p=new(q): writc New(q) = new(q)€ = qI'e = qI'V5 and apply induction;

+ p=0dH(q): similar to p = qII'q"; left to the reader.

4.10 THEOREM. (Soundness Theorem)
The structure T(APC)/«2 is a model of APC.

PROOF: To prove the theorem, we need to check that each axiom of APC holds in

T(APC)/«=. As an example, consider axiom A5 (by far the most difficult one!).
Consider the relation R on T(APC), that relates all terms with themselves, and

moreover relates each term of the form (x'y)-z with x-(y-z) (and vice versa), every

term (x['y)-z with x[['(y-z) (and v.v.), and every term (x['y) 'z with x| (y['z) (and
v.v.). We claim that R is a bisimulation on T(APC). To prove this, we need to check
that the transfer property holds. This proof has a large number of cases. We will give
some of these cases.

In principle, this part of the proof could have been done mechanically also. In
fact, the tool ECRINS (see MADELAINE & DE SIMONE [MDS}]) has been designed for
doing this type of proofs. Unfortunately, ECRINS is not able to deal with Plotkin
style rules with a lookahead of more than one, such as the third rule for the - opera-
tor.

Suppose from (x-y)-z, we can perform a step. This fact is proved by a proof
following the rules for - in table 11. Now look at the last step in this proof.

CASE 1. The last step uses the first rule. Thus, X'y can do an a-step. Now look at
the last step in the proof of this fact.
SUBCASE 1.1. This last step uses the first rule. Thus X can do an a-step, to a term X',

say. We have x 2, x', and so the steps in the proof were xy 2, x"y and (x-y)-z a,

(x'y)-z. From the first rule and x 2, x', we derive immediately that x-(y-z) a,
x"(y-2), and (x"y)-z and x"-(y-z) are again related.

SUBCASE 1.2. This last step uses the second rule. Then, we must have x ‘L' x' and y
2, y', and so x'y 2+ X[y’ and (x-y)-z 2+ (x'I'y')-2. By the first rule, y > y' implies
y-z2s y'z, and by the second rule, using X + X', we derive X-(y-z) 2+ x'[M(y"2).
Now (x'['y")'z and x'[['(y'-z) are again related.

SUBCASE 1.3. This last step uses the third rule. Then, we must have x L x' 2 x",y
b, y' and y(a,b) = ¢, whence x-y % x"['y' and (x-y)-z = (X"I'y')-z. By the first
rule, y , y' implies y-z = y"z, and by the third rule, using x — x' 25 X", we derive
x-(y-z) a x M(y"z). Now (x"[I'y")-z and x"[['(y'-z) are again related.

CASE 2. The last step uses the second rule. Thus, X-y can do an V-step and z 4 2z
for some u,z'. Now the only ‘lpossibility that x-y can do an \/-step, is as a result of

rule 2, with x — X' and y > y', and so, we had x-y — X[y’ and (x-y)z
(x'I'y)['z'. By rule 2, using y —+ y' and z Y, 2, we obtain yz u, y'IFz', and by
rule 2 again, using X - X', we obtain x-(y-z) = x'[M(y'[' Z). Now (x'I'y)['z' and
X'IMy'I'Z) are again related.
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CASE 3. The last step uses the third rule. Thus, X'y can do a V-step followed by an
a-step, Z , Z'and Y(a,b) = ¢ (for some a,b,c,z'). Now, as in case 2, Xy — im-
pliesx ~— x' and y — y' and x-y — X'['y’. This means that x'['y’ can do an a-step.
This must be the result of one of the three rules for [['.

SUBCASE 3.1. The first rule for [ was used. Then, x' 2, x" for some x", and so
x Ty 2 x"I'y' and (x-y)z S (x"I'y’)'z". By the second rule for -, using y iR y'
and z b, Z', we obtain y-z , y'['z'. Then apply the third rule for -, using x = x' £
x", 1o get x-(y'z) & x"IMy'I'z). Now (x"['y") 'z and x" [} (y' I 2) are again related.
SUBCASE 3.2. The second rule for [ was used. Then, y' 2+ y" for some y", and so
Xy = x'I'y" and (x-y)z % (x'IMy")I' . Apply the third rule for -, usingy = y'
& y"andz 5, Z,togetyz % y"I'z'. Then use the second rule for - with x = X' t0
obtain x-(y-z) & x'My"I'Z"). Now (x'['y")['2' and X' (y"'2') are again related.
SUBCASE 3.3. The third rule for | was used. Then a is the result of a communica-
tion, say between a' and a". We find x' & x", y' 2 y", and so x I[‘y x"['y" and
(x-y)z N (x" Il‘x") I'z'. Now use the third rule for [ withy — y' N y" and z b, z,
to get y- 2 M y"['z'. Now notice that by associativity of y we have that
y{a',ya"b)) = c Applying this in the third rule for [ again, with x = x' = x",

leads to x-(y-z) & x"[My"I'z'). Now (x"I'y") 'z’ and x" [ (y"['Z') are again related.

Thus, we see that the transfer property holds from (x'y)-z to x-(y-z). All infor-
mation, needed to prove the converse implication is available above. In a similar
fashion, we can prove the transfer property between (x[['y)-z and x[['(y-z), and be-
tween (X['y) 'z and x| (y[}'z). We conclude that the relation R is a bisimulation, and
thus that law AS holds in T(APC)/«. Also, we have shown that the laws (x['y)-z =
x['(y-z) and (xI'y)I'z = x I (y ' 2) hold in T(APC)/sz.

Another interesting case in the soundness proof that we would like to mention is
axiom PC4: (Vx)-y = xI'y + xI'y. In the soundness proof of this axiom (similar to,
but much simpler than the proof for AS), we need the soundness of the law x3['y =
xIy.

4.11 LEMMA. Let p be a basic term and let q be an APC-term.

i. If, for some acA p a, g, then there exists a basic term g’ with size(q') <

size(p) suchthat APCHp=aq +pandAPCF+ q=(};

ii. Ifp ~ q, then there exists a bottom term g’ with size(q’) < size(p) such that
APCH p=Vq +pand APC+ q=4¢.

PROOF: Straightforward induction on the structure of p.

4.12 THEOREM. (Completeness Theorem)
The axiom system APC is a complete axiomatisation of T(APC)/«z .

PROOF: Let p,g € T with p & q. We have to prove that APC - p = g. Since
T(APC)/« is a model for APC, the elimination theorem 4.9 tells us that we only
have to prove this for basic terms p,g. A simple argument gives that it is even
enough to show that for basic terms p,q

p+d=q = APCF p+q=q.
Assume p+q = q. We prove APC - p+q = g with induction on size(p) + size(q).
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*» p=3J&:use Al and A7.

« p=ap':wehavep g ep'. Since p+q & q, there is a q' such that q 2 q' and
£p' & d. By lemma 4.11 there is a basic term q" with size(q") < size(q), 9 =a-q"
+gand " =('". Sincep' & q", p'+q" = q" and 4"+p' « p'. Thus, by induction,
p'+q" = q" and q"+p' = p', and hence p' = q". But now we derive that p+q = ap' +
g=aq"+q=q.

« p=+p'": this case is similar to the previous case.

* p=p'+p" since p+q = q, we also have p'+q « q and p"+q « Q. By induction
P'+q = q and p"+q = q. Hence p+q = p'+p"+q = p+q+p"+q =q+q = q.

4.13 STANDARD CONCURRENCY.

As a consequence of the completeness theorem, all equations that hold in the model
T(APC)/«= can be proven to hold in APC for all closed terms. We list a few of these
equations in table 12. A name often given to such sets of equations is Standard Con-
currency.

(xI'y)Irz = xIM(yI'z)
xIy-8=ylx-8

x[I'd =x8

TABLE 12. Standard concurrency.

As consequences of these axioms, we mention the identities (X['y) 'z = (yI'x) 'z
and x['y = x-8['y.

Using these axioms, we can prove a variant of the well-known Expansion Theo-
rem, that is very useful to break down the parallel composition of many processes.
Since our parallel operator is not in the visible signature, we will not bother to state it
here.

5. EXAMPLES.
In order to give some interesting examples of process definitions in APC, we will
say a few words about recursive definitions (more can be found in [BK2,3, VG]).

5.1 DEFINITIONS. A recursive specification over APC is a (countable) set of
equations {X = tx | X € V}, where V is a set of variables, and tx is a term over APC,
possibly using variables from V, but no other variables. There is exactly one equa-
tion X = ty for each variable X.

A solution of the recursive specification E in a certain domain is an interpreta-
tion of the variables of V as processes such that all equations of E are satisfied.

The Recursive Definition Principle (RDP) says that every recursive
specification has a solution. In the action relation model of APC, RDP holds, if we
add for each recursive specification E = {X =ty | X € V} and foreach X € Vacon-
stant (X | E) to the language, together with an action rule

1By

XIE) >y
Here (tx | E) denotes the term obtained from tx by replacing each variable Y € V by
(Y | E). These rules still fit the tyft format, and so bisimulation remains a congru-
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ence. Moreover, one can sce that all axioms of APC remain valid in the extended
setting.

Recursive specifications are used to define (specify) processes. Note that not ev-
ery recursive specification has a unique solution, for {X = X} has every process as a
solution. In order to get a class of processes with unique solutions, we formulate the
condition of guardedness.

5.2 DEFINITIONS.
i. Lettbe an APC-term, and X a variable in t. We call an occurrence of X in t
guarded if X is preceded by an atomic action, i.e. t has a subterm of the form a-s,
with a € A, and the X in question occurs in S. Otherwise, we call the occurrence of
X unguarded.
ii. A recursive specification {X = tx | X € V} is guarded if each occurrence of a
variable in each tx is guarded.
iii. The Recursive Specification Principle (RSP) is the assumption that every
guarded recursive specification has at most one solution. We can prove that the ex-
tended model of APC satisfies RSP.

In the remainder of this section, we give a number of examples of recursive
specifications in APC.

5.3 EXAMPLE 1: SYSTOLIC SORTING.

Systolic systems are characterised by a regular configuration of simple components
or cells. Systolic systems have turned out to be useful in VLSI design (see KUNG
(KD. '

We describe a sorting machine, that can is always ready to input numbers (less
than some upper bound N), and is always ready to output the smallest number it
contains. This machine consists of a number of cells that each can contain two num-
bers, and will dynamically create more cells as they become needed. Our description
is based on the description in KOSSEN & WEIILAND [KW], where also a correctness
proof can be found (in the setting of ACPz). Consider the configuration in fig. 4.

1 ]¢Cct {2 | C [ 3] Cs Cs | 5 1 Cs LE_-

FIGURE 4.

The squares in fig. 4 represent the cells, the lines interconnecting them communica-
tion ports. We use the following atomic actions:

« sj(d) send number d along port i
+ ri(d) read number d along port i
+  Ci(d) communicate number d along port i.

The communication function on these atomic actions is defined by: ¥(ri(d), si(d)) =
ci(d), and vy is undefined on all other pairs.
Cell number i has three types of states, depending on whether it contains 0,1 or 2
numbers. The recursive specification of cell i is given in table 13.
Then, the sorting machine is given by:
SORT = 3x(CY),

where H = {ri(d), si(d) | i>1, d<N}. Note that SORT has a guarded recursive speci-
fication.
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c= dz‘h ri(d)-new(C2,)-C (d) + ri(stop) + si(empty)-C;

clid) = 3 r(e)-C2(min(d.e),max(d,e)) + si(d)sis1(stop)-C, (d<N)

e<N

c2de) = 3 ri(f)-sis1(e)-CE(min(d.f), max(d.f)) +
isN

+ si(d)-[sz ri1(f)-C2(min(e f),max(e,§)) + ri1(empty) Gl (e)]  (dsesN)

TABLE 13. Systolic sorting.

5.4 EXAMPLE 2: QUEUE.

The specification of the unbounded (FIFO) queue is one of the recurring issues in
process algebra. Examples of recursive specifications can be found in BAETEN &
BERGSTRA [BB], VAN GLABBEEK & VAANDRAGER [VGV]. We will give two re-
cursive specifications in APC involving the new construct: the first has an infinite
number of equations, the second a finite number. To start with, we give the standard
infinite specification of the queue in table 14. We denote the queue with contents ¢
(o is a sequence of data elements, ¢ € D* for some data set D) by Qg. A is the empty
sequence, d (for de D) also stands for a one element sequence, and 6p denotes the
concatenation of sequences ¢ and p.

Q= D, in(d)Qq
deD )
Qod = Z in(e)Qecd + out(d)-Qs (oeD*,deD)
eeD

TABLE 14. Queue, standard specification.

5.5 The second specification in APC will use an unlimited number of cells as in 5.3.
This specification is inspired by a similar specification in DE SIMONE [DS}. Each cell
can contain one data element; this element can be output when the permission for
doing so is received: the permission go(i) will communicate with the potential output
action pout(d,i) with as result the output out(d). Thus, we have a communication
function y given by:
1go(i), pout(d,i)) = out(d),

and v is undefined otherwise. The definition of the cells and the queue is given in
table 15. Note that this is a guarded specification. The encapsulation set is H =
{go(i), pout(d,i) | de D, i>1} (D is the set of data elements).

Ci= Z in(d)-new(Ci, 1)-pout(d,i)-go(i+1) (i>1)
deD

Q' = dn(new(C1)-go(1)-5)

TABLE 15. Queue, first APC specification.

5.6 THEOREM. Q! = Q.
PROOF: Define, for each n>1 and each e D*, with ¢ = dy...dk, the process Rr:, by:

RS = OH(Cn.k I pout(d1,n+k-1)-go(n+k) ... I'pout(d.n)-go(n+1) I'go(n)-).
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(Note that we assume Standard Concurrency of 4.13 in this proof.) We will prove
that, for each n>1, R?, = Qg. We do this by showing that the Rg satisfy the specifi-

cation in table 14. As a consequence, we derive
Q" =3n(new(C1)-go(1)-8) =aH(C1go(1)8) = Ry=Cr.

Now the verification:
R%. = 3H(CnlMgo(n)-3) =

= ZDin(d)-aH(neW(Cn+1)~pout(d,n)-90(n+1)Irgo(n)'S) =
de

= ZDin(d)-aH<cn+1 IMpout(d,n)-go(n+1)Fgo(n)-3) =
de

= Y in(d)-R.
deD
Next, if o = dy...dk-1,

R34 = 9H(Cn.+kI'pout(dq,n+k-1)-go(n+k) ...
...I'pout(dk-1,n+1)-go(n+2) ' pout(d,n)-go(n+1)[F go(n)-8) =
Y in(€)-3H(New(Cn.k+1)-pout(e,n+k)-go(n+k+1)T ...

ecD

...I'pout(d,n)-go(n+1)[Fgo(n)-3) +
+ out(d)-dH(Cn.kIM pout(ds,n+k-1)-go(n+kK) I ... go(n+1)'8) =

Zbin(e)BH(kaﬂ I'pout(e,n+k)-go(n+k+1) ...
ee

...[I'pout(d,n)-go(n+1)[Fgo(n)-3) +
+ out(d)-9H(CnkIM'pout(dy,n+k-1)-go(n+k) ... Fgo(n+1)-8) =

= Y in(e)-Rlgq + out(d)-RE"".
eeD
Using RSP (see 5.2), we can show that the R?, satisfy the specification in table 14.

5.7 THIRD SPECIFICATION OF QUEUE.

Next, we will give a finite recursive specification for the queue. In this specification,
we will use action renaming. For each function f: A — A, we introduce a unary
operator py, that will rename atoms a into f(a), and do nothing else. This operator is
axiomatised in table 16. Action rules are quite easy to formulate.

pi(8) = &

pr(ax) = f(a)-pi(x)

pi(Vx) = V(pi(x))

pi(x +Y) = pi(x) + pi(y)
TABLE 16. Action renaming.

From BAETEN & BERGSTRA [BB] we know that the queue can be finitely specified
in ACP plus renaming. In table 17, we give a finite specification in APC plus re-
naming.
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Cell = Z in(d)-on(new(ps(Cell))-pre(d)-go)
deD
Q2 = 9y(new(ps(Cell)-go-3)

TABLE 17. Queue, second specification.

Here, we use the renaming function f that renames each pre(d) into near(d), and
leaves all other atoms unchanged. The communication function is specified by
v(go,near(d)) = out(d) (undefined otherwise). The encapsulation set is H = {go} v
{near(d) | de D}.

In order to see that the specification in table 17 indeed describes a FIFO-queue, it
might be illustrative to consider fig. 5.

FIGURE 5.

In this diagram, we have abstracted from data d in actions in(d), out(d), etc. With
arrows the 'causal’ links between events are denoted. A black line stands for an en-
capsulation operator dH and a dashed line for a renaming operator ps.

One may imagine that in an execution, events 'bubble’ upwards until they have
passed through the surface of the topmost encapsulation line. An events cannot move
before all its causal predecessors have occurred. A pre-event can pass through both
types of lines. However, when it passes through a dashed line, it is renamed into a
near-event. near-events and go-events are blocked by a black line. The synchroni-
sation of a near-event and a go-event, however, gives a out-event. out-events, like
in-events, can pass through both types of lines.

Along these same lines, we can give a recursive specification for the stack in
APC.

5.8 THEOREM. Q2 = Q.

PROOF (sketch): Similar to 5.6. We define processes Sg, that satisfy the specifica-
tion in table 14. The S are defined by using auxiliary processes Tg, that, in turn, are
defined inductively:

Ty, = Cell

Tdo = oH(pi(To I pre(d)-go))

So = oH(pi(TslM'go-3)).
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The proof that the S¢ satisfy the specification in table 14 makes use of alphabet in-
formation. For more information on this type of argument, see BAETEN, BERGSTRA
& KLop [BBK].

5.9 EXAMPLE 3: BAG.

Along the same lines as for queue, we can give a simple recursive specification for
the bag (an unordered channel; a state of the bag can be considered as a multiset of
objects). We give the recursive specification in table 18, without further comment.

Bag = Y, in(d)-new(out(d))-Bag
deD

TABLE 18. Bag.
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